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3.10 Summary of existing conditions 
The majority of the drainage lines within the area that would be directly impacted by 
the proposed mine are Valley fill type. These streams generally have temporary 
hydrology, indistinct and discontinuous channel form, cohesive fine-grained bed 
material, no large woody debris (unless flowing through a wooded area), and low 
energy. The Valley fill streams have occasional shallow knickpoints present, but 
typically, the length of channel with scoured bed downstream of the knickpoints is 
less than 20 m long. In their headwaters, these streams have a well defined channel, 
flowing in bedrock and coarse-grained bed material, with moderate amounts of large 
woody debris and low to moderate energy. At the downstream end of the drainage 
network, Driggle Draggle Creek becomes sufficiently large to form a defined 
meandering channel.  

4 Potential Impacts of the Proposed Project 

4.1 Altered distribution of stream power 
The impact of the proposed Project on fluvial geomorphological character would be to 
excavate and emplace waste rock above some existing Valley fill streams, and some 
existing drainage lines on rehabilitated landforms. Alteration of drainage to divert 
runoff around the open cut could potentially impact stream form by decreasing or 
increasing flow.  

The Western drainage line and North-west drainage lines will be progressively 
deprived of runoff as the mine progresses (Figure 2). The runoff of the upper 
North-west drainage and Northern drainage lines will be diverted northward into the 
Northern drainage line, which will result in an increase in stream power through the 
middle stages of the Project (Figure 2). However, the Northern drainage line is a very 
low energy system, and this small increase in stream power would likely be 
inconsequential. Overall, there would be a slight decrease in stream power of Driggle 
Draggle Creek compared with the existing conditions (Figure 2), but the change is so 
small that it would likely be inconsequential. Similarly, the change in stream power of 
South Creek would be small (Figure 2), and probably inconsequential.  

4.2 Namoi River licenced extraction 
A licenced volume of water will be extracted from the Namoi River, near location H in 
Figure 4. The volume of water involved is a small percentage of the river flow and 
would not impact geomorphological processes.  

4.3 Private haul road between Blue Vale Road and the 
Whitehaven CHPP 

The Project will involve construction of an approximately 1 km long section of private 
haul road (including an overpass over the Kamilaroi Highway) between Blue Vale 
Road and the Whitehaven CHPP. This section of road would be constructed on the 
Namoi River floodplain and pass within about 200 m of the river channel. The main 
impact of this road would be on the hydraulics of flood flows (considered in the 
Surface Water Assessment [Appendix B of the EIS]) and no impact on 
geomorphological processes of the Namoi River is anticipated.  
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5 Recommended Mitigations and Monitoring 

5.1 Mitigations 
There is a very small risk that over time, additional runoff to the Northern drainage 
line as a result of diversion of water around the pit, would increase knickpoint 
formation in that system. The other streams in the study area will likely become more 
stable due to reduced runoff. The most important mitigation is maintenance of 
complete vegetation cover. The energy of this environment is so low that good 
vegetation cover will virtually eliminate the risk of stream instability. 

5.2 Monitoring 
On the basis of the analysis presented in this report, only the Northern drainage line 
warrants monitoring. This should be in the form of an annual inspection on foot, 
mapping the precise location and height of knickpoints. Any movement in the location 
of the knickpoint exceeding 2 m, or deepening exceeding 0.5 m, compared to existing 
conditions, should be reported and ameliorated through erosion control measures. 
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